Exercise 55

A certain bacterium grows in culture in a circular region. The radius of the circle, measured in centimeters, is given by $r(t)=6-\left[5 /\left(t^{2}+1\right)\right]$, where t is time measured in hours since a circle of a $1-\mathrm{cm}$ radius of the bacterium was put into the culture.
a. Express the area of the bacteria as a function of time.
b. Find the exact and approximate area of the bacterial culture in 3 hours.
c. Express the circumference of the bacteria as a function of time.
d. Find the exact and approximate circumference of the bacteria in 3 hours.

Solution

Part (a)

Since the bacteria grows in a circle, the area (in square centimeters) is

$$
A(t)=\pi[r(t)]^{2}=\pi\left(6-\frac{5}{t^{2}+1}\right)^{2}
$$

Part (b)

In 3 hours the area is

$$
A(3)=\pi\left(6-\frac{5}{3^{2}+1}\right)^{2}=\pi\left(6-\frac{5}{10}\right)^{2}=\pi\left(\frac{11}{2}\right)^{2}=\frac{121 \pi}{4} \mathrm{~cm}^{2} \approx 95.0 \mathrm{~cm}^{2}
$$

Part (c)

Since the bacteria grows in a circle, the circumference (in centimeters) is

$$
C(t)=2 \pi r(t)=2 \pi\left(6-\frac{5}{t^{2}+1}\right) .
$$

Part (d)
In 3 hours the circumference is

$$
C(3)=2 \pi\left(6-\frac{5}{3^{2}+1}\right)=2 \pi\left(6-\frac{5}{10}\right)=2 \pi\left(\frac{11}{2}\right)=11 \pi \mathrm{~cm} \approx 34.6 \mathrm{~cm} .
$$

